Expand source code
# Copyright (c) 2021. Davi Pereira dos Santos
# This file is part of the i-dict project.
# Please respect the license - more about this in the section (*) below.
#
# i-dict is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# i-dict is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with i-dict. If not, see <http://www.gnu.org/licenses/>.
#
# (*) Removing authorship by any means, e.g. by distribution of derived
# works or verbatim, obfuscated, compiled or rewritten versions of any
# part of this work is illegal and it is unethical regarding the effort and
# time spent here.
#
def fit(algorithm=None, config={}, Xin="X", yin="y", output="model", version=0, **kwargs):
"""
>>> from sklearn.ensemble import RandomForestClassifier as RF
>>> from idict import idict, let
>>> d = idict.fromtoy() >> let(fit, algorithm=RF) # doctest: +SKIP
>>> d.model # doctest: +SKIP
RandomForestClassifier()
>>> d >>= predict # doctest: +SKIP
>>> d.z # doctest: +SKIP
array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1])
"""
obj = algorithm(**config)
obj.fit(kwargs[Xin], kwargs[yin])
return {output: obj, "_history": ...}
def predict(input="model", Xin="X", yout="z", version=0, **kwargs):
return {yout: kwargs[input].predict(kwargs[Xin]), "_history": ...}
# TODO these functions are just drafts
def transform(input="model", Xin="X", yin="y", Xout="X", yout="y", version=0, **kwargs):
return {yout: kwargs[input].transform(kwargs[Xin]), "_history": ...}
def use(input="model", Xin="X", yin="y", Xout="X", yout="y", version=0, **kwargs):
if hasattr(kwargs[input], "predict"):
r = kwargs[Xin], kwargs[input].predict(kwargs[Xin])
elif hasattr(kwargs[input], "transform"):
r = kwargs[input].transform(kwargs[Xin])
elif hasattr(kwargs[input], "sample"):
r = kwargs[input].sample(kwargs[Xin])
elif hasattr(kwargs[input], "resample"):
r = kwargs[input].resample(kwargs[Xin])
else:
raise Exception("Cannot detect how to use this model.")
if len(r) == 1:
X, y = r, None
else:
X, y = r
return {Xout: X, yout: y, "_history": ...}
fit.metadata = {
"id": "idict-----------------------wrapper--fit",
"name": "fit",
"description": "Induce a model.",
"parameters": ...,
"code": ...,
}
predict.metadata = {
"id": "idict-------------------wrapper--predict",
"name": "predict",
"description": "Predict values according to a model.",
"parameters": ...,
"code": ...,
}
transform.metadata = {
"id": "idict-----------------wrapper--transform",
"name": "transform",
"description": "Transform values according to a model.",
"parameters": ...,
"code": ...,
}
use.metadata = {
"id": "idict-----------------------wrapper--use",
"name": "use",
"description": "Use (predict, transform, [re]sample) values according to a model.",
"parameters": ...,
"code": ...,
}