Module garoupa.algebra.matrix.mat
Expand source code
# Copyright (c) 2021. Davi Pereira dos Santos
# This file is part of the garoupa project.
# Please respect the license - more about this in the section (*) below.
#
# garoupa is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# garoupa is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with garoupa. If not, see <http://www.gnu.org/licenses/>.
#
# (*) Removing authorship by any means, e.g. by distribution of derived
# works or verbatim, obfuscated, compiled or rewritten versions of any
# part of this work is illegal and is unethical regarding the effort and
# time spent here.
from garoupa.algebra.abs.element import Element
from garoupa.algebra.npmath import int2ml, m2intl
class Mat(Element):
def __init__(self, i, n, mod=2, _m=None):
"""nxn modulo o
Usage:
>>> a = Mat(4783632, 6, 10)
>>> a
[[1 2 3 6 3 8]
[0 1 7 4 0 0]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]]
>>> a2 = a * a
>>> a2
[[1 4 0 0 6 6]
[0 1 4 8 0 0]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]]
>>> b = Mat(9947632, 6, 10)
>>> a * b * a2 * ~a2 * ~b == a
True
"""
self.cells = sum(range(1, n))
super().__init__(i, order=mod ** self.cells)
self.n, self.mod = n, mod
self.m = int2ml(i, mod, n) if _m is None else _m
def __mul__(self, other):
if self.mod != other.mod or self.n != other.n:
raise Exception("Elements are from different groups.")
m = (self.m @ other.m) % self.mod
return Mat(m2intl(m, self.mod), self.n, self.mod, _m=m)
def __repr__(self):
return f"{self.m}"
def __invert__(self):
"""
>>> a = Mat(8761437689349876134, 4, 4294967291)
>>> b = Mat(42978259879825, 4, 4294967291)
>>> a == a * b * ~b
True
:return:
"""
import numpy as np
m = (np.linalg.inv(self.m) % self.mod).astype(np.uint64)
return Mat(m2intl(m, self.mod), self.n, self.mod, _m=m)
Classes
class Mat (i, n, mod=2)
-
Element(i: int, order: int)
nxn modulo o Usage:
>>> a = Mat(4783632, 6, 10) >>> a [[1 2 3 6 3 8] [0 1 7 4 0 0] [0 0 1 0 0 0] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1]] >>> a2 = a * a >>> a2 [[1 4 0 0 6 6] [0 1 4 8 0 0] [0 0 1 0 0 0] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1]] >>> b = Mat(9947632, 6, 10) >>> a * b * a2 * ~a2 * ~b == a True
Expand source code
class Mat(Element): def __init__(self, i, n, mod=2, _m=None): """nxn modulo o Usage: >>> a = Mat(4783632, 6, 10) >>> a [[1 2 3 6 3 8] [0 1 7 4 0 0] [0 0 1 0 0 0] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1]] >>> a2 = a * a >>> a2 [[1 4 0 0 6 6] [0 1 4 8 0 0] [0 0 1 0 0 0] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1]] >>> b = Mat(9947632, 6, 10) >>> a * b * a2 * ~a2 * ~b == a True """ self.cells = sum(range(1, n)) super().__init__(i, order=mod ** self.cells) self.n, self.mod = n, mod self.m = int2ml(i, mod, n) if _m is None else _m def __mul__(self, other): if self.mod != other.mod or self.n != other.n: raise Exception("Elements are from different groups.") m = (self.m @ other.m) % self.mod return Mat(m2intl(m, self.mod), self.n, self.mod, _m=m) def __repr__(self): return f"{self.m}" def __invert__(self): """ >>> a = Mat(8761437689349876134, 4, 4294967291) >>> b = Mat(42978259879825, 4, 4294967291) >>> a == a * b * ~b True :return: """ import numpy as np m = (np.linalg.inv(self.m) % self.mod).astype(np.uint64) return Mat(m2intl(m, self.mod), self.n, self.mod, _m=m)
Ancestors
- Element
- abc.ABC
Inherited members