Module garoupa.algebra.cyclic.natm
Expand source code
# Copyright (c) 2021. Davi Pereira dos Santos
# This file is part of the garoupa project.
# Please respect the license - more about this in the section (*) below.
#
# garoupa is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# garoupa is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with garoupa. If not, see <http://www.gnu.org/licenses/>.
#
# (*) Removing authorship by any means, e.g. by distribution of derived
# works or verbatim, obfuscated, compiled or rewritten versions of any
# part of this work is illegal and is unethical regarding the effort and
# time spent here.
from garoupa.algebra.abs.element import Element
class Natm(Element):
"""
Usage:
>>> a = Natm(1414343245, 2**32)
>>> b = Natm(77639, 2**32)
>>> b
77639
>>> ~b
3006515831
>>> a * b
3061309019
>>> a * b * ~b == a
True
"""
def __init__(self, i, n):
super().__init__(i, n - 1)
self.n = n
def __mul__(self, other):
"""
Usage:
>>> a = Natm(7, 5)
>>> b = Natm(9, 5)
>>> a * b
3
"""
return Natm((self.i * other.i) % self.n, self.n)
def __add__(self, other):
"""
Usage:
>>> a = Natm(7, 5)
>>> b = Natm(9, 5)
>>> a + b
1
"""
return Natm((self.i + other.i) % self.n, self.n)
def __repr__(self):
return f"{self.i}"
def __invert__(self):
return Natm(pow(self.i, -1, self.n), self.n)
Classes
class Natm (i, n)
-
Usage:
>>> a = Natm(1414343245, 2**32) >>> b = Natm(77639, 2**32) >>> b 77639 >>> ~b 3006515831 >>> a * b 3061309019 >>> a * b * ~b == a True
Expand source code
class Natm(Element): """ Usage: >>> a = Natm(1414343245, 2**32) >>> b = Natm(77639, 2**32) >>> b 77639 >>> ~b 3006515831 >>> a * b 3061309019 >>> a * b * ~b == a True """ def __init__(self, i, n): super().__init__(i, n - 1) self.n = n def __mul__(self, other): """ Usage: >>> a = Natm(7, 5) >>> b = Natm(9, 5) >>> a * b 3 """ return Natm((self.i * other.i) % self.n, self.n) def __add__(self, other): """ Usage: >>> a = Natm(7, 5) >>> b = Natm(9, 5) >>> a + b 1 """ return Natm((self.i + other.i) % self.n, self.n) def __repr__(self): return f"{self.i}" def __invert__(self): return Natm(pow(self.i, -1, self.n), self.n)
Ancestors
- Element
- abc.ABC
Inherited members